What Spectral Methods Can Tell Us about Heat Transfer Effects in Water Calorimeters

نویسندگان

  • Ronald E. Tosh
  • Heather Chen-Mayer
چکیده

In water calorimetry, numerous ancillary effects – such as radiation-induced chemical reactions, scattering and excess heat from nonwater materials, and dose nonuniformities within the phantom – complicate the determination of absorbed dose from measurements of radiation-induced heating. Corrections for thermal transport due to excess heat and dose nonuniformities can be difficult to assess because the effects are delayed by variable amounts of time – from seconds to hours – that depend upon the geometry of the probes, the calorimeter vessel and the radiation beam. Typically, such corrections involve finiteelement modeling of these components that is analyzed in the time domain and, accordingly, is sensitive to timing details of the source. We have developed a technique that circumvents this difficulty by using periodic modulation of the radiation source and measuring an effective frequency response, or system transfer function, of the calorimeter. By tracing the frequency dependence of systematic deviations from nominal or applied dose rates due to heat conduction, our approach provides a basis for assessing systematic errors for all radiation exposure times, including those that can not be handled by data analysis techniques like midpoint extrapolation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Heat transfer in Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation using Chebychev Spectral Collocation Method

In this work, analysis of heat transfer in porous fin with temperature-dependent thermal conductivity and internal heat generation is carried out using Chebychev spectral collocation method. The numerical solutions are used to investigate the influence of various parameters on the thermal performance of the porous fin. The results show that increase in convective parameter, porosity parameter, ...

متن کامل

Study about heat transfer coefficient of water-nanofluid in pulsating heat pipes

Pulsating heat pipe is an efficient heat exchange device which is being used for cooling and heating recovery. In the present work, we made a closed-loop pulsating heat pipe with six U-turns and we used water in our system. Moreover the use of water-Fe3O4 nanofluid was studied with two different filling ratios 40% and 50% and 1% mass concentration. At the end we calculated heat resistance and h...

متن کامل

Study about heat transfer coefficient of water-nanofluid in pulsating heat pipes

Pulsating heat pipe is an efficient heat exchange device which is being used for cooling and heating recovery. In the present work, we made a closed-loop pulsating heat pipe with six U-turns and we used water in our system. Moreover the use of water-Fe3O4 nanofluid was studied with two different filling ratios 40% and 50% and 1% mass concentration. At the end we calculated heat resistance and h...

متن کامل

Effect of Inserting Coiled Wires in Tubes on the Fluid Flow and Heat Transfer Performance of Nanofluids

In the present study, numerical study of Al2O3-water nanofluid flow in different coiled wire inserted tubes are performed to investigate the effects of inserting coiled wires in tubes on the fluid dynamic and heat transfer performance ofv nanofluids. The numerical simulations of nanofluids are performed using two phase mixture model. The flow regime and the wall boundary conditions are assumed ...

متن کامل

A feasibility study and economic analysis for application of nanofluids in waste heat recovery

This paper presents a comprehensive theoretical, experimental, and economic study on the application of nanofluids as heat transfer fluid in waste heat recovery systems. The research work was conducted in a steel-making complex in which a plate heat exchanger had been used to recover heat from hot process water. The system was theoretically modelled and the effects of using nanofluids as he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007